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Subharmonic steps and inertial effects in a system of two coupled overdamped oscillators
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Using the singular perturbation method, we solved analytically the equation of motion for two cou-
pled nonlinear overdamped oscillators. We demonstrated that the appearance of subharmonic steps can
be caused by a coupling term, and its possible relation with an inertial effect of the coupled system was

also discussed.
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Recently, the dynamical behavior of a nonlinear sys-
tem with many interacting degrees of freedom has been
given much attention [1]. One of the best examples is the
system of many-coupled nonlinear oscillators. The
reason is that this coupled system has a close connection
with dynamical responses of many realistic physical sys-
tems, e.g., sliding charge-density waves (CDW) [2,3],
Josephson junctions [4], and the flux creep and flow dy-
namics in the high-T, or type-II superconductors [5], etc.
Most of these systems can be modeled by one-
dimensional chain of balls which are connected by har-
monic springs with spring constant k and move in a
sinusoidal potential. Usually, for simplicity, the mass of
the ball is neglected and in the case of no coupling, the
motion of each ball can be described by an overdamped
nonlinear harmonic oscillator. It is well known that even
this single overdamped nonlinear oscillator can show the
so-called mode-locking phenomenon [6] when it suffers
from a combination of dc and ac external forces with fre-
quency o, i.e., the ball will have a tendency to move with
an intrinsic frequency w, which is locked at a series of
multiple values of the ® (wy=rnw, where n is an integer).
This mode locking is called harmonic. However, the
subharmonic mode locking (i.e., ®y=pw/q, where p and
g are integers) cannot be observed for the single over-
damped nonlinear oscillator. This is an obvious example
showing the importance of the coupling between neigh-
boring oscillators. What the real effect is of the coupling
on mode locking and other dynamical properties is of in-
terest to many researchers. The coupled equation of
motion for the coupled overdamped nonlinear oscillators
has been solved by different methods, e.g., discrete map-
ping [7], the mean-field method (8], and numerical in-
tegration [9]. In this paper we try to use the singular per-
turbation method [10] to solve analytically the equation
of motion for two coupled nonlinear oscillators, which is
the simplest situation including the effect of the coupling.
This analytical method has overcome shortcomings exist-
ing in all mappings and numerical calculations, e.g., the
dependence of the subharmonic mode locking on the
selection of initial conditions, and on the form of the map
at the top and bottom of the potential well, etc. We
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found that the coupling has a fundamental effect on the
subharmonic mode locking, i.e., as long as the coupling
constant k does not equal zero, the width of the subhar-
monic steps will not become zero. It is well known that
the subharmonic mode locking can also be caused by an
inertial term in an underdamped oscillator [11]. There-
fore, we may say that coupling between overdamped os-
cillators can produce an “inertial” effect. The subhar-
monic mode locking in the dynamical response of an
overdamped chain of nonlinear oscillators, and other
“inertial” effects, e.g., the ringing [12] existing in the
transient dynamics of the nonlinear system and the oc-
currence of chaos [13], etc., may also be interpreted by
the coupling between many degrees of freedom in the
nonlinear system [14].

We consider only two relaxation oscillators coupled by
a harmonic spring with spring constant k and lying in a
sinusoidal potential. The coupled system is driven by a
time-dependent force F(t). The equation of motion for
the coupled system can be written as

1, .~ o
—;—X1+k(X1"x2)_“QLSin(Qx1 )=F(t)/m ,

2

%x2+/€(x2—x,)—%sin(Qx2)=F(z)/m ,
where x; represents the position of the ith oscillator, 7 is
the relaxation time, Q =2 /A with A being the period of
the sinusoidal potential, m is the effective mass of the os-
cillators, and w, is the restoring frequency. Usually the
external force F(t) should have two parts F, and
Fcos(wt), corresponding to a constant force and a vi-
brating force, respectively. Introducing the phase vari-
ables @; = Qx;, Eq. (1) can be rewritten as

@1+ k(p,—@,)+sing,=e +e,cos(wt) ,
)
@, tk(@,— @) +sing,=e+e,cos(wt) ,

where e=F,/Fy, e, =F,/Fr, and F; =m?/Q; the time
t is measured in units of @, !, ®, =w?r, and the frequency
o is measured in units of w,; k =k /w? is a dimensionless
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coupling constant. In general, the coupled nonlinear
equations (2) cannot be analytically solved, but in the lim-
it of k <<1 and e, <<1 (i.e., in the case of weak coupling
and strong pinning, and a small amplitude of the vibrat-
ing force), Eq. (2) can be analytically solved by the singu-
lar perturbation method.

We first expand the phase variable ¢; in power of the
small parameter e, and then again expand coefficients of
the series in powers of the coupling constant k,

‘P1=¢(10)+¢(1”91+ T,
Pr=90 + e+ -, (3)
e=a0+klel+ A

Substituting Eq. (3) into Eq. (2) and collecting e, terms
with the same order, we obtain the following system of
equations.

(1) For the e{ term, we have

¥ + k(0 — ) —sing{”=a, ,
¥+ k(g =y —sing? =a, .

Now ¢\, ¥4, and @ can be again expanded in powers of
k, and here, for simplicity, we keep only up to k! terms

=fotkfi, ¥=gotkg, ag=eqtak. (5

4)

Substituting (5) into (4), collecting also terms of the
same order in k, we have the following.
(a) The k° term:

fo—sinfozeo ,
. . (6)
8o —SINgp=eg .

If ey <1, Eq. (6) has no rotational solution, i.e., the oscil-
lators are in a static equilibrium state. Because we are
only interested in the dynamical response of the coupled
oscillator system to an external force, here we will only
take ey > 1. It is easy to find a solution of Eq. (6) in this
case [15]

- e%——l
fo= eotsin(wgt +6;) ’
) @)
. eo_l
B0 g Fsin(wyr +6,)
where 6, and 6, are two integral constants,
(00=(e(2)—1)1/2.
(b) The k! term:
fi+(fo—8o)—ficosfo=ay, ®)
81 1+(go—fo)—gicosgo=aj .
The solution of Eq. (8) is
: a;+(go—fo)
=(eq+ —
Si=teg+oingy) [ LB o)y,
©
=(ey+sin, )f———al+(fo_go)
&1 0 8o eo+sing0

(2) For the e} term, we have
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P+ k(P — i) — ¢ Veosy O =1, +cos(w? ) |

. (10)
95+ k(g — i) —yilcosys” =1, +cos(wt ) .

Similarly, ¥\, ¥4, and A, can also be expanded in
powers of k, and we keep only up to k! terms

YW=Fy+kF,, ¥{'=G,+kG,, A=by+Bk . (11)

Substituting Eq. (11) into Eq. (10), and collecting terms
with the same order of k, we have the following.
(a) The k° term:

Fy—Fycosf,=by+cos(wt) ,

. (12)
Gy,—Gycosgy=by+cos(wt) .
Its integral solution is
Fo=(e, +si )f b0+cos(wt)d
o=(eoFsinfo eo+sinf £
13
Go=len+si )f by+cos(wt) 13
0= €0 T 5lNE0 ey tsing,
(b) The k! term:
Fy—Fcosfo=B,—F,fsinfo—(Fy—G) , (14)
G, —Gcosgo=B,—Gogsinfo—(Go—F,) .
Its integral solution is
Bi—Fofsinfo—(Fy—Gy)
Fl (eo Slnfo)f e0+sinfo dt N
(15)

G1=(e0+sing0)f BI_GOg;ZIii?I;ZGO_FO) dt

Now, we have an integral solution of Eq. (2) as follows:
pr=v"+e, ¥\ =Ffo+kf te Fo+e kF, , (16)
Pr=v +e ¥y =go+kg,+e,Gyte kG, .

At the same time, the constant external force e has been
expanded as

e:ao+}\,lel:eo+a1k+boel+ﬁlk61 . (17)

Here, the expressions for the f,g0; f1,81; Fo,Gy; and
F,, G, can be found from Egs. (7), (9), (13), and (15), re-
spectively.

The average phase velocity { ¢, ) is equal to

() =(Fo)+k{f)+e {Fy)+ek(F) . (18

Using the standard Fourier transformation, we can find
from Eq. (7)

n
n=1

f0=wol1+ > 2k"cos

w0t+—g—+61H ]

I

where k =e,—w,. Integrating Eq. (19), we get

(19)
g0=w0[1+ S 2k"cos |n

n=1

wot+%+02
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n

o
m0t+?+61 ]

+c1],

mm=%b+§

sin (n
n=1 na)o
_ (20)
® 2k . T
golt)=wy t+n§1 nwosm n a)ot+?+92 +c2},
where
oo L n . T
cl=—n§1 nmosm n —2—+91 ,
(21)
* i n . T
c2=—n§l nwosm n 7-4—92
Therefore, from Eqgs. (20), we can find
. 1
<fo>="f[fo(T)-fo(0)]:mo . (22)

Here T is the intrinsic period of the system, T =27 /w,.
Using Eq. (20) and completing the integrals in Eq. (9), we
can also obtain

()= ()= £1(0)]

e
;%[a1e0+ca0eo(c2—cl)—Esin(@z-—ﬂl)]. (23)
0
This term represents a small correction to the phase ve-
locity of the coupled system due to coupling between two
oscillators. This correction comes mainly from the
difference between two initial phases 6, and 68, of the two
oscillators. As will be seen in the following, it will have
no effect on the harmonic or subharmonic steps.
In Eq. (13), using the equality

1 =_!_:e0+sin(coot+91)
e tsinf, fo

, (24)
e2—1

it is not difficult to demonstrate that the F(¢) term con-
tributes only to the main step when w=w,, and has no
contribution at all to the subharmonic steps we are in-
terested in when w =n .

The term F,(t) is the most important and the only one
having a contribution to the subharmonic steps. Substi-
tuting the expressions for f, F,, and G,(?) into Eq. (15),
and after making a very lengthy and tedious integral ma-
nipulation for the situation w =nw, (n >1), we can find
an expression for F,(z) and correspondingly get (¥, ). In
the calculation, in order to avoid the secular term in
(F,), following the rules in the singular perturbation
method, the parameter b, should be set equal to zero.
Because the formula of (F, ) is too long to be written in
this paper, and we are only interested in the coupling
effect on the interference and the subharmonic steps, here
we have written down its expression with only terms up
to the zero order in k,

@9

(cosB,—cosf;) | . (25)

€o
eqgwoB;— 2
(n°—1w,

Finally, from Egs. (22), (23), and (25) and in the zero or-
der of k, we obtain

(@)~ Ffo)+e k{F) . (26)
At the same time, the external dc field equals
e=eyt+pBke,+ -+ . (27)

Now we see from Eq. (25) that for the same values of 3;,
the phases 0, and 0, of the two coupled oscillators can be
adjusted to make the value in the square brackets of Eq.
(25) become zero. If so, it means that when the external
dc force e is varied about the e, in the scale of B ke, the
(F,) remains unchanged (=0), and so {¢;) is not
changed and still equals w, Obviously, it means a
subharmonic step satisfying @ =nw, will appear in the dc
response of the coupled system to an external force.

The step width can also be found from Eq. (25). When
cosf,—cosf,==2, the B; takes its maximum and
minimum values, respectively. So, 88;=imax— Bimin
=4/[(n?>—1)w}]). The step width for ® =nw, is given by

A 4ke,
1/n 7~ (nz_l)w(z) ’ (28)

which is proportional to k and e, in our approximation,
and when k —0, i.e., going back to the overdamped sin-
gle oscillator model, the width will approach zero, too.

From Eq. (28), we can see the following.

(1) The bigger the value of n, the narrower the width of
the corresponding subharmonic step.

(2) The width A is proportional to the amplitude e, of
the vibrating applied force. We should emphasize that
this behavior is caused by our perturbation expansion to
only the first order of the e¢;. In general, the width A may
have a more complicated dependence on e; [11].

(3) When k—0, A,,,—0, and our model reduces to
the ordinary overdamped oscillator model.

We had investigated the single underdamped oscillator
model with a small inertial term 3,, <<1 [11] and found
that

e‘on

Ay =B (29)

€o

Comparing Egs. (29) and (28), we may conjecture that the
coupling term between two overdamped oscillators plays
an effective inertial role and the

B, ~ k-2 (30)
™ ok
z% (when eyg>>1) . (31
0

This result is qualitatively consistent with some numer-
ical calculations [3] based upon the deformation model in
the CDW system although they used a train of field
pulses (from zero to above threshold) rather than using
sinusoidal driving. Strogatz et al. [8] also found the iner-
tialike effects (hysteresis, switching, etc.) in a model of
coupled overdamped oscillators with a periodic coupling
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rather than a quadratic coupling used in our model. Be-
cause an ac driving field was not included in their calcula-
tion they did not investigate the combined effect of the dc
and ac driving fields and, of course, did not find the
subharmonic steps either. Both of their results and my
work demonstrate the importance of the coupling term in
coupled overdamped oscillators, i.e., the coupling can
produce the inertialike effects in a whole region from a
pure dc dynamical response to the interference effects be-
tween applied ac and dc fields. There are also differences
between both results. They claimed the crucial depen-
dence of their switching and hysteresis on the periodic
coupling in their model, and said neither switching nor
hysteresis was predicted for quadratic coupling used in
our model. However, in our paper we have found the
subharmonic steps in coupled overdamped oscillators
with only quadratic coupling, which is another kind of
inertial-like effect in the sliding state. After comparing
with the result obtained in the single-underdamped-
oscillator model [11], we think that the coupling term
may produce an effective inertia mass in the dynamical
response. If so, the system will be able also to show the
hysteresis near the threshold field due to the existence of
the effective inertia, as demonstrated numerically in Ref.
[11]. Even though one does not believe in the existence of
the effective inertia, it is still natural to infer physically
the existence of the hysteresis due to the coupling term.
This is because when the dc external field e is increased
slowly past the threshold field e, the induced phase ve-
locity {¢;) jumps discontinuously up to a finite value
from zero, and the oscillator (or particle) will store up
elastic energy due to the coupling term during this depin-
ning process. Then it increases as e increases. However,
when e is then decreased, the {({;) also decreases and
then drops discontinuously to zero at the separate pin-
ning threshold value er because it is now in a sliding-
motion state and has a stored elastic energy, which is
different from the initial state [when e increases from zero
to above er). I think the stored elastic energy perhaps
plays a role here similar to the inertial energy when the
oscillator is an underdamped one with an inertia mass.
Of course, the above conjecture or inference should be
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proved by a numerical simulation. This is an interesting
problem and will be done in another paper.

Why can the coupling term between two coupled over-
damped oscillators produce inertial effects in the sliding
motion state? What is its physical reason? These ques-
tions should be given more investigation. Here, we will
give a possible explanation. It is the coherence between
different oscillators that causes the appearance of the
inertial effects. In the pinned state, there are a lot of
quasistationary equilibrium states for the coupled system
and correlation between different parts in this coupled
system is rather small. The random pinning fields make
each oscillator have its independent ;. However, after
the external field becomes larger than the e, the coupled
oscillators go into a sliding motion state. The correlation
effect becomes larger. It is just coupling term that makes
each oscillator bind together, move coherently, and have
an average common phase velocity ;). So, originally
uncorrelated oscillators in the coupled system bind to-
gether to become a single moving rigid body, and most
probably, its inertia cannot be again considered as negli-
gible and perhaps even has a small value. Anyway, this
coherence in the sliding state may be a possible physical
reason to produce the inertial effect from the coupling of
overdamped oscillators.

In conclusion, we have demonstrated that the interac-
tion existing in a system with many degrees of freedom
has a fundamental effect on its dynamical response to an
external force, and the subharmonic steps can be only
caused by the coupling terms under the approximation
e, <k <<1. There will be no subharmonic steps at all
without the coupling. This phenomenon may indicate
the existence of an intrinsic relation between the ‘“‘iner-
tial” response of the nonlinear coupled system and the
coupling between different degrees of freedom. This con-
clusion may be used for many practical physical systems,
e.g., the CDW system, Josephson-junction arrays, etc.
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